26 research outputs found

    The stability of an NPZ model subject to realistic levels of vertical mixing

    Get PDF
    The linear stability of a vertically-distributed, Nutrient-Phytoplankton-Zooplankton (NPZ) ocean ecosystem model is analyzed to understand how vertical mixing influences biological dynamics. In the absence of vertical diffusion, the model generally exhibits both stable fixed point and limit cycle behavior, depending on the depth and choice of parameters. Diffusion couples the dynamics of nearby levels and can induce stable profiles as well as oscillatory dynamical trajectories that become vertically phase-locked for large mixing levels. Calculations of the Lyapunov exponent reveal that vertical diffusion can drive this model into a chaotic state, though this occurs only for levels of diffusion well below those found in nature. The dynamics of the model, assuming macrozooplankton are the dominant grazers in the ecosystem, are compared to those in which microzooplankton dominate, with a faster grazing rate and poor assimilation efficiency. While the coupled physical-macrozooplanton system has a stable profile, the coupled microzooplankton profile remains unstable, even at large mixing levels. Fluctuations occur on time scales varying between a few days and a few months, depending on the parameters and magnitude of diffusion

    Modeling larval connectivity of coral reef organisms in the Kenya-Tanzania region

    Get PDF
    Most coral reef organisms have a bipartite life-cycle; they are site attached to reefs as adults but have pelagic larval stages that allow them to disperse to other reefs. Connectivity among coral reef patches is critical to the survival of local populations of reef organisms, and requires movement across gaps that are not suitable habitat for recruitment. Knowledge of population connectivity among individual reef habitats within a broader geographic region of coral reefs has been identified as key to developing efficient spatial management strategies to protect marine ecosystems. The study of larval connectivity of marine organisms is a complex multidisciplinary challenge that is difficult to address by direct observation alone. An approach that couples ocean circulation models with individual based models (IBMs) of larvae with different degrees of life-history complexity has been previously used to assess connectivity patterns in several coral reef regions (e.g., the Great Barrier Reef (GBR) and the Caribbean). We applied the IBM particle tracking approach to the Kenya-Tanzania region, which exhibits strong seasonality in the alongshore currents due to the influence of the monsoon. A 3-dimensional (3D) ocean circulation model with 2 km horizontal resolution was coupled to IBMs that track virtual larvae released from each of 661 reef habitats, associated with 15 distinct regions. Given that reefs provide homes to numerous species, each with distinctive, and in aggregate very diverse life-histories, several life-history scenarios were modeled to examine the variety of dispersal and connectivity patterns possible. We characterize virtual larvae of Acropora corals and Acanthurus surgeonfish, two coral reef inhabitants with greatly differing pelagic life-histories, to examine the effects of short (50 days) pelagic larval durations (PLD), differences in swimming abilities (implemented as reef perception distances), and active depth keeping in reef connectivity. Acropora virtual larvae were modeled as 3D passive particles with a precompetency period of 4 days, a total PLD of 12 days and a perception distance of 10 m. Acanthurus virtual larvae were characterized by 50 days precompetency period, a total PLD of 72 days and a perception distance of 4 km. Acanthurus virtual larvae were modeled in two ways ā€” as 3D passive particles and including an idealized ontogenetic vertical migration behavior. A range of distances within which larvae were able to perceive reefs and directionally swim to settle on them during the competency period were evaluated. The influence of interannual environmental variations was assessed for two years (2000, 2005) of contrasting physics. The spatial scale of connectivity is much smaller for the short PLD coral, with successful connections restricted to a 1Ā° radius (~100 km) around source reefs. In contrast, long distance connections from the southern to the northernmost reefs (~950 km) are common for virtual Acanthurids. Successful settlement for virtual Acropora larvae was 20% overall, with cross-region recruitment much increased compared to the coral larvae. Approximately 8% of Acropora larvae that successfully settled, recruited to their source reef (self-recruitment), an important proportion compared to only 1-2 % self-recruitment for Acanthurus. These rates and dispersal distances are similar to previous modelling studies of similar species in other coral reef regions and agree well with the few observational studies within the Kenya-Tanzania region

    William (Bill) Peterson's contributions to ocean science, management, and policy

    Get PDF
    Ā© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated ā€œbig scienceā€ programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Billā€™s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Petersonā€™s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation

    US GLOBEC: Program Goals, Approaches, and Advances

    Get PDF
    This special issue summarizes the major achievements of the US Global Ocean Ecosystem Dynamics (GLOBEC) program and celebrates its accomplishments. The articles grew out of a final symposium held in October 2009 under the auspices of the National Academy of Sciences Ocean Studies Board (http://usglobec.org/Symposium). This special issue updates the US GLOBEC "mid-life" Oceanography issue (Vol. 15, No. 2, 2002, http://tos.org/oceanography/archive/15-2.html), which put forward many of the goals and activities of the program, but was published while field work was still being conducted and results had yet to be synthesized across regional programs. The present special issue highlights the advances in understanding achieved through the synthesis of regional studies and pan-regional comparisons
    corecore